К основному контенту

БЛОГ ПЕРЕЕХАЛ


БЛОГ "Проект Эйлера на Python" наконец-то получил второй шанс на жизнь и переехал на новый адрес https://pythonvsjs.valis.me/

В новом формате я не просто буду решать задачи проекта Эйлера на python но и сравнивать производительность Python, JavaScript, Lua, Dart, Scala,  Haskel и прочих языков программирования в решении задач

Следите плиз за моим новым блогом

Также подписывайтесь на мой Youtube канал https://www.youtube.com/channel/UCLdyT4P8AA-8YpsAFfeLZZQ

Там много интересных видео связанных с IT:  Как написать telegram бота за 15 минут, сделать управляемый по wifi чайник,  стоит ли учить Dart и многое другое. Все это на моем канале

И для текстового сопровождения видео я сделал специальный блог blog.valis.me - где вы сможете полистать сопровождающий видео текстовый материал

И чтобы не пропустить все это подписывайтесь на мой Twitter @Denis22019055

Все спасибо! Пока! 

Популярные сообщения из этого блога

Задача 21. Дружественные числа

Пусть d( n ) определяется как сумма делителей  n  (числа меньше  n , делящие  n  нацело). Если d( a ) =  b  и d( b ) =  a , где  a  ≠  b , то  a  и  b  называются дружественной парой, а каждое из чисел  a  и  b  - дружественным числом. Например, делителями числа 220 являются 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 и 110, поэтому d(220) = 284. Делители 284 - 1, 2, 4, 71, 142, поэтому d(284) = 220. Подсчитайте сумму всех дружественных чисел меньше 10000. Решение Для начала определим функцию, которая будет возвращать сумму делителей числа: def get_sum(n):     s=0     for i in range(1,n):         if n%i==0:             s+=i     return s Думаю не требует объяснений все довольно тривиально Далее определяем функцию, возвращающую список дружественных чисел до числа n:   def gen_friendlys(n):   ...

Задача №3 Наибольший простой делитель

Условие задачи Простые делители числа 13195 - это 5, 7, 13 и 29. Каков самый большой делитель числа 600851475143, являющийся простым числом? Решение Простым числом, является натуральное число больше единицы, которое имеет 2 делителя - 1 и само себя.  Для начала найдем все простые делители необходимого числа.  Чтобы сократить поиск будем перебирать до квадратного корня  600851475143 округленного вверх  ( функцией  math.ceil) Перебор будем вести начиная с числа 3. Если i делит число на цело, рекурсивно обращаемся к функции issimple c аргументом i. Функция issimple возвращает пустой список если число является простым. В этом случае число попадает в результирующий список Далее остается только вернуть максимальное значение массива простых чисел, которые нацело делят число 600851475143  Код Python import math def issimple(a): r=math.ceil(math.sqrt(a)) lst=[] for i in range(3,r): if a%i==0: if issimple(i)...

Задача №5 Наименьшее кратное

Условие задачи 2520 - самое маленькое число, которое делится без остатка на все числа от 1 до 10. Какое самое маленькое число  делится нацело  на все числа от 1 до 20? Скажу сразу - не смотря на не большой диапазон чисел условия реализация этой задачи получилась громоздкой и ее выполнение занимает больше всего времени - около 90 с  несмотря на все попытки оптимизации. Решение